Calculating Your Water Savings

To calculate the amount of water that can be harvested this is a good formula to remember: 1 inch of rain on a 1,000 sq. ft. roof yields 623 gallons of water. Calculate the yield of your roof by multiplying the square footage of your roof by 623 and divide by 1000.

Example:
Roof 40 x 50 feet = 2,000 sf
2000 x 623 gallons = 1,246,000
1,246,000 divided by 1,000 = 1246

For each 1 inch of rain, this roof would yield 1,246 gallons of water.

46.56 average inches per year would result in the harvest of 58,014 gallons if it were all stored.

Whether you are considering a cistern system or adding a rain barrel to your landscape, rainwater harvesting can be financially and environmentally rewarding.

The University of Florida does not endorse specific businesses, however, it is sometimes difficult to find vendors for rainwater harvesting and we would like to recognize the consultant used in this project:

BRAE Rainwater Technologies
1 (800) 772-1958 www.braewater.com

For more information about harvesting rainwater please visit the Florida Extension Website at www.SolutionsForYourLife.ufl.edu
The Sumter County Extension Office moved to the West Central Florida Agricultural Center at the Sumter County Fairgrounds in January 2006. A grant from the Withlacoochee Regional Water Supply Authority made it possible for the Florida Friendly Demonstration Landscape to be developed. The Sumter County Master Gardeners were instrumental in the garden design and have continued to work on the garden design and improvements in the landscape. The garden now includes a bog garden, butterfly garden, landscaping with wildflowers demonstration (Florida Wildflower Council grant) and composting demonstration.

Rainwater Harvesting—the Heart of Our Florida Friendly Demonstration Landscape

Rainwater Harvesting System

Rainwater is collected and stored in a rainwater harvesting system. The size of the roof of the “Ag Center” is approximately 38,000 square feet. Approximately 36.36 inches of rainwater is collected from the roof each year, which amounts to approximately 1,377,000 gallons of rainwater per year. Two 3,000 gallon cisterns were installed and attached to the roof with an above-ground wrap. The cisterns are connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply. The cisterns are designed to hold hardy plants in the “arms” but were capped off instead. It was feared that the plants would either be displaced by the force of the rainwater or that the plants would either be crowded or not survive the Florida heat. The cisterns were connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply. The cisterns are designed to hold hardy plants in the “arms” but were capped off instead. It was feared that the plants would either be displaced by the force of the rainwater or that the plants would either be crowded or not survive the Florida heat. The cisterns are connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply.

Rainwater is collected and stored in a rainwater harvesting system. The size of the roof of the “Ag Center” is approximately 38,000 square feet. Approximately 36.36 inches of rainwater is collected from the roof each year, which amounts to approximately 1,377,000 gallons of rainwater per year. Two 3,000 gallon cisterns were installed and attached to the roof with an above-ground wrap. The cisterns are connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply. The cisterns are designed to hold hardy plants in the “arms” but were capped off instead. It was feared that the plants would either be displaced by the force of the rainwater or that the plants would either be crowded or not survive the Florida heat. The cisterns were connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply. The cisterns are designed to hold hardy plants in the “arms” but were capped off instead. It was feared that the plants would either be displaced by the force of the rainwater or that the plants would either be crowded or not survive the Florida heat. The cisterns were connected underground, and a pump delivers water to a low-volume irrigation system. The system is also connected to the City of Webster public water supply.